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Question: What do security proofs get us?




Goal for Talk

Identify all the underlying assumptions
for the security of Falcon and Dilithium.

|II

We'll focus just on “theoretical” security.
(Side-channel attacks are out of scope.)




Quick Review of Models



Security Models for Signatures

Goal: Prove that Adversary cannot forge a signature to any
message other than those signed by the oracle. (EUF-CMA)
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Security Models for Signatures

Better yet, prove that Adversary can neither sign a new message
nor create a new signature for an old message. (SUF-CMA)
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Security Models for Signatures

Security can be divided into 2 parts:
(1) Prove that forging is impossible without the signing oracle. (EUF-NMA)
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Security Models for Signatures

Security can be divided into 2 parts:
(1) Prove that forging is impossible without the signing oracle. (EUF-NMA)
(2) Prove that the signing oracle does not help.
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The QROM

Suppose that a probabilistic algorithm A uses a hash function H.




The QROM

Suppose that a probabilistic algorithm A uses a hash function H.
In the ROM, a truly random function f is chosen and each instance
of His replaced by f.




The QROM

Now suppose B is a quantum algorithm, where H denotes

H ([x)y)) = |(lx)y @ H(x))).
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The QROM

Now suppose B is a quantum algorithm, where H denotes

H (|x)y) = [(Ix)y @ H(x))).
The QROM replaces H with

f( |X>|y)) = |( |x)|y & f(x))) D. Boneh et al., "Random Oracles in

a Quantum World”. (2011)
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Security Proofs for Dilithium
and Falcon



Sources

The Round 3 description of
Dilithium has a detailed
discussion of security.

I’'m ignoring this paragraph
(from section 1) for now,
since it seems speculative.

CRYSTALS-Dilithium

scheme the same) so that the SelfTargetMSIS problem becomes information-theoretically
hard, thus leaving this version of Dilithium secure in the QROM based on just MLWE. An
instantiation of such parameters in [KLS18] results in a scheme with signatures and public
keys that are 2X and 5X larger, respectively. While we do not deem this to be a good
trade-off, the existence of such a scheme gives us added confidence in the security of the
optimized Dilithium.

Very recently, two new works narrowed the gap even more between security in the
ROM and the QROM. The work of [DFMS19] showed that if the underlying ¥-protocol is
collapsing and has special soundness, then its Fiat-Shamir transform is a secure signature
in the QROM. Special soundness of the Dilithium X-protocol is directly implied by the
hardness of MSIS [Lyul2, DKL 18]. Furthermore, [DFMS19] conjecture, that the Dilithium
Y-protocol is collapsing. The work of [LZ19] further showed that the collapsing property
does have a reduction from MLWE. The reduction is rather non-tight, but it does give
even more affirmation that there is nothing fundamentally insecure about the construction
of Dilithium or any natural scheme built via the Fiat-Shamir framework whose security can
be proven in the ROM. In our opinion, evidence is certainly mounting that the distinction
between signatures secure in the ROM and QROM will soon become treated in the same
way as the distinction between schemes secure in the standard model and ROM — there
will be some theoretical differences, but security in practice will be the same.




Sources

The Falcon description says less about security, but it seems like
the proof can be put together using these papers.

C. Gentry, et al. "Trapdoors for Hard Lattices and New Cryptographic
Constructions.” (2008)

D. Boneh et al., "Random Oracles in a Quantum World”, (2011)
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EUF-CMA Security Arguments
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EUF-CMA Security Arguments
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EUF-CMA Security Arguments
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NTRU-SIS (Falcon)

Let Rq = Zq289[X]/(X10%* + 1).

Forging a single signature is equivalent to finding a solution
S1,S2 € Ry,

with small Euclidean norm, to a random equation of the form

s{+s,h=c

f \ Uniformly random

h=gf~ 1 whereg, f have
random Gaussian coefficients

Note: The authors actually state a different problem: namely,
compute (f', g") with small coefficients such that h = (g")(f')~1.
s that equivalent?




Floating Point Precision (Falcon)

For any EUF-CMA attack strategy, there is a EUF-NMA attack
strategy that succeeds with equal probability.

But, that assumes infinite floating point precision.
The authors argue that (if < 2°* queries are assumed) 53 bits of
floating precision is sufficient to still maintain security.




The QROM Assumption

oJNSeoll

Simple.
Well-studied.
Not actually true.




Other Hash Assumptions

The protocols use hashes and extended output functions, and
make assumptions about them. E.g., Dilithium says:

5To simplify the concrete security bound, we assume that ExpandA produces a uniform matrix A € Rgxe,
ExpandMask(K,-) is a perfect pseudo-random function, and CRH is a perfect collision-resistant hash
function.

Question: Can all such assumptions be derived from the QROM
assumption?




MLWE (Dilithium)

The MLWE Problem. For integers m, k, and a probability distribution D : R, — [0, 1]
we say that the advantage of algorithm A in solving the decisional MLWE,, x. p problem
over the ring R, is

AdviVh = |Pr[b=1| A « RI™Ft « R b+ A(A, t)]
—Prlb=1| A « R*¥;s; « D¥;so < D™; b+ A(A,As: +s9)]|.

Here, R

= Zg3804171X]/(X?>° + 1), and D is a uniform
distribution over all elements of R, that have small coefficients.

q




SelfTargetMSIS (Dilithium)

Let B; € R, be the set of elements whose coefficients are from
{—1,0,1} and which have exactly T nonzero coefficients.

The SelfTargetMSIS Problem. Suppose that H: {0,1}* — B; is a cryptographic hash
function. To an algorithm A we associate the advantage function

SelfTargetMSIS L
AdVH,m,k,'y (A) T

0<|I¥lloo <7 mxk. [« . |T IH(-))
Pr[/\H(u||[I|A]-y):c A+ Ry = | o +— A (A)] .




SelfTargetMSIS (Dilithium)

The SelfTargetMSIS Problem. Suppose that H: {0,1}* — B; is a

function. To an algorithm A we associate the advantage function

SelfTargetMSIS L
AdVH,m,k,’)’ (A) =

0< Iyllos <~ mxk. [« . |T IH()
P AR T A L= e [T (= [ o) < A0 @)

Basically the adversary is trying to solve
H(Aw) = wy and [[wllo <y
But, they are also allowed a salt 4 and an additive factor v:
H(ullv+ Aw) = wy and [[wll, [V]lo < ¥




SelfTargetMSIS (Dilithium)

The SelfTargetMSIS Problem. Suppose that H: {0,1}* — B; is a
function. To an algorithm A we associate the advantage function

SelfTargetMSIS L
AdVH,m,k,’)’ (A) =

0< ||yl <7 mxk, [« ._ |T IH())
Pr AHG | I A]-y) = A+ Ry = | o +— A (A)] .

The authors say that — although it’s not always explicit — Fiat-
Shamir signatures typically rely on complicated assumptions like
this one. True?




